
Gradients of productivity 
and flammability drive 

fire regimes in the SW US

Larissa Yocom
Utah State University

Mike Crimmins
University of Arizona

Don Falk
University of Arizona

Rachel Loehman
USGS

Andi Thode
Northern Arizona University

Will Flatley
University of Central Arkansas

Collaborators:

Megan Friggens
U.S. Forest Service

Zander Evans
Forest Guild

Windy Bunn
National Park Service

Craig Wilcox
U.S. Forest Service

Shaula Hedwall
USFWS



Fire regime controls: 
climate, ignitions, vegetation

Figure: Moritz, Hessburg and Povak in McKenzie et al. 2011



Climate & vegetation are changing

Hoerling et al. 2013 C.D. Allen in McDowell & Allen 2015Cayan et al. 2013



Vegetation and fire regimes 
vary along elevation gradients
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Questions

• Do we see this curve in available data?

• What is likely to happen to fire activity in the 
future? 

Historical Future?
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Study area

At 1,539,393 randomly-located points, we extracted:

• Elevation (Landfire)
• Vegetation: BioPhysical Setting (Landfire)
• Net Primary Productivity (NTSG)
• Climate (Gridmet & MACA)
• Historical fire frequency & severity (Landfire)



MAP, MAT, VPD ƒ elevation
P

re
ci

p
it

at
io

n
 (

m
m

)

Te
m

p
e

ra
tu

re
 (

°C
)

V
P

D
 (

kP
a)

Elevation Elevation Elevation



NPP ƒ MAP, MAT, VPD
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Vegetation types ƒ elevation, climate
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Fire frequency & severity reflect interactions 
of fuel productivity & flammability
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Projected changes in climate are 
variable across the elevation gradient

• RCP 8.5 scenario, 2040-2069 vs. 1981-2010
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Projected changes by vegetation class
RCP 8.5 scenario, 2040-2069 vs. 1981-2010
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Projected % change in climate variables
RCP8.5, 1981-2010 to 2040-2069

Data from MACA; Abatzoglou and Brown 2011
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Caveats

• We focused on historical fire frequency; frequency 
has already changed

• Historical fire frequency still represents fire 
potential, because of the crossing of the two fire 
limitation gradients (fuel load/continuity & 
flammability)

• Also: a confounding factor of legacy fuels from 
suppression era



Conclusions

• Some thoughts
• Lowest elevations: greatest absolute change
• Highest elevations: greatest % change
• Some parts of the gradient have tighter relationships- no 

wiggle room?
• Other places on the gradient have wide variability- room for 

flexibility?
• If more precip in low-elevation places: they stop being fuels 

limited
• If higher temps in high-elevation places: they stop being 

flammability limited

• Place-based analyses are critical; incorporate feedbacks
• Question: At what scale can we safely generalize about 

trends and forecasts?



Thank you
Funding: Joint Fire Science Program
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Formal 
theoretical 
prediction

• Two variables, v1 and v2, changing 
monotonically I opposite direction along an 
elevation gradient

• Their product will peak at mid-elevation

• This can be expressed as the second 
derivative of the product = 0 at that point
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